

REDESIGNING THE ORGANIZATION WITH INFORMATION SYSTEMS

10.1

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

LEARNING OBJECTIVES

- Demonstrate how building new systems can produce organizational change
- Explain information system development to fit business plan
- Identify core activities in systems development process
- Appraise alternatives for building systems
- Evaluate object-oriented development & rapid application development (RAD)

10.2

MANAGEMENT CHALLENGES

- SYSTEMS AS PLANNED
 ORGANIZATIONAL CHANGES
- PROCESS REENGINEERING & TOTAL QUALITY CONTROL
- OVERVIEW OF SYSTEMS DEVELOPMENT
- ALTERNATIVE APPROACHES (Enhancements vs. Reengineering?)

*

10.3

© 2002 by Prentice Hall & © 2012 by

INFORMATION SYSTEMS PLAN

 A road map indicating the direction of systems development, the rationale, the current situation, the management strategy, the implementation plan and the budget

>>

10.5

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

INFORMATION SYSTEMS PLAN 1/3

(The seven elements)

- 1. PURPOSE OF THE PLAN: Overview of plan contents, changes in current situation, firm's strategic plan, current organization, key business processes, management strategy
- 2. STRATEGIC BUSINESS PLAN: Current situation, current organization, changing environments, major goals of plan

>>

10.6

INFORMATION SYSTEMS PLAN 2/3

- 3. CURRENT SYSTEMS: Major systems supporting business functions & processes, major current capabilities (hardware, software, database, telecommunications), difficulties meeting requirements, anticipated future demands
- 4. NEW DEVELOPMENTS: New system projects (project descriptions, business rationale), new capabilities required (hardware, software, database, telecommunications, internet)

>>

10.7

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

INFORMATION SYSTEMS PLAN 3/3

- 5. MANAGEMENT STRATEGY: Acquisition plans, milestones & timing, organizational realignment, internal reorganization, management controls, major training initiatives, personnel strategy
- 6. IMPLEMENTATION PLAN: Anticipated difficulties, progress reports
- 7. BUDGET REQUIREMENTS: Requirements, potential savings, financing, acquisition

*

10.8

ENTERPRISE ANALYSIS

(BUSINESS SYSTEMS PLANNING)

- Organization-wide information needs in terms of:
 - Organizational units
 - Functions
 - Processes
 - Data elements
- Helps identify key entities & attributes in organization's data

s in

10.9

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

ENTERPRISE ANALYSIS

CRITICAL SUCCESS FACTORS (CSFs)

Small number, easily identifiable operational goals

- Shaped by industry, manager, environment
- Believed to assure firm's success
- Used to determine organization's information requirements

*

10.10

CRITICAL SUCCESS FACTORS Example: PROFIT CONCERN

- GOALS (AUTOMOBILE INDUSTRY): Earnings per share, return on investment (ROI), market share (%), new product
- CSF: Styling, quality dealer system, cost control, energy standards

*

10.11

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatir

CRITICAL SUCCESS FACTORS

Example: NONPROFIT CONCERN

- GOALS (HOSPITAL): Excellent health care, meeting government regulations, meeting international standards, future health needs
- CSF: Regional integration with other hospitals, efficient use of resources, improved monitoring of regulations

*

10.12

CRITICAL SUCCESS FACTORS AND ORGANIZATIONAL GOALS (Table 11.2)

Example	Goals	CSF
Profit concern	Earnings / share Returns on investment Market share New product	Automotive industry
Nonprofit	Excellent healthcare Meeting government regulations Future health needs	Regional integration with other hospitals Efficient use of resources Improved monitoring of regulations

10.13

SPECTRUM OF ORGANIZATIONAL CHANGE

- AUTOMATION: Using technology to perform tasks efficiently / effectively, to speed up existing tasks
- RATIONALIZATION OF PROCEDURES: Streamline SOPs; eliminate bottlenecks
- PARADIGM SHIFT: Radical reconceptualization of the nature of the business and organization >>
- BUSINESS REENGINEERING: Radical redesign of processes to improve cost, quality, service; maximize benefits of technology >>

10.16

PARADIGM SHIFT

- PARADIGM: A complete mental model of how a complex system functions
- A PARADIGM SHIFT: Involves
 rethinking the nature of the business,
 the organization; a complete
 reconception of how the system
 should function

*

10.17

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

BUSINESS PROCESS REENGINEERING (BPR)

- REENGINEERING: Redesigning business processes to lower cost, speed development
- WORK-FLOW MANAGEMENT: Streamlining process to move documents easily, efficiently

10.18

STEPS IN BUSINESS REENGINEERING

- 1. Develop the business vision and process objectives
- 2. Identify the process to be redesigned
- 3. Understand and measure the performance of existing processes
- 4. Identify the opportunities for applying information technologies
- 5. Build a prototype of the new process

10.19

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

FEASIBILITY

- Determining whether a solution is achievable given the organizational resources & constraints
 - Technical: Available technical resources
 - Economic: costs vs. benefits?
 - Operational: fits the organization?

*

10.20

DESIGN SPECIFICATIONS 1/3

- OUTPUT: Medium, content, timing
- INPUT: Origins (source), flow, data entry
- USER INTERFACE: Simplicity, efficiency, logic, feedback, errors
- DATABASE DESIGN: Logical data relations, volume, speed requirements, file organization & design, record specifications, relations

>>

- PROCESSING: Computations, program modules, required reports, timing of outputs
- MANUAL PROCEDURES: What activities, who performs them, how, where

10.23

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

DESIGN SPECIFICATIONS 2/3

- CONTROLS: Input, processing, output, procedural
- SECURITY: Access controls, catastrophe plans, audit trails
- DOCUMENTATION: Operations, systems, user
- CONVERSION: Transfer files, initiate new procedures, select testing modules, cut over to new system
- TRAINING: Select training techniques, develop training modules, identify training facilities

>>

10.24

DESIGN SPECIFICATIONS 3/3

 ORGANIZATIONAL CHANGES: Task redesign, job design, process design, organization structure design, reporting relationships

10.25

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatir

COMPLETING SYSTEM DEVELOPMENT PROCESS

- PROGRAMMING: Translating needs to program code
- TESTING: Does system produce desired results?
- CONVERSION: Changing from the old to the new

*

10.26

TESTING

- TEST PLAN: Preparations for tests to be performed
 - UNIT TESTING: Tests each unit separately
 - SYSTEM TESTING: Do modules function as planned?
 - ACCEPTANCE TESTING: Final certification

*

10.27

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

CONVERSION

- PARALLEL: Old & new run same problems. Give same results?
- DIRECT CUTOVER: Risky conversion to new system
- PILOT: Introduce into one area. Does it work?
 Yes: introduce into other area
- PHASED: Introduce in stages
- CONVERSION PLAN: Schedule for conversion
- DOCUMENTATION: Description of how system works

10.28

PRODUCTION & MAINTENANCE

- PRODUCTION: Constant review by users & operators. Does it meet goals?
- MAINTENANCE: Upkeep, update, corrections over time

© 2002 by Prentice Hall & © 2012 by Yacoub Sa

10.29

SYSTEMS DEVELOPMENT CORE ACTIVITY DESCRIPTION			
SYSTEMS ANALYSIS	IDENTIFY PROBLEM(S)		
	SPECIFY SOLUTIONS ESTABLISH INFORMATION REQUIREMENTS		
	LOTABLIOTINI OKMATION REQUIREMENTS		
SYSTEMS DESIGN	CREATE LOGICAL DESIGN SPECS		
	CREATE PHYSICAL DESIGN SPECS		
	MANAGE TECHNICAL REALIZATION OF SYSTEM		
PROGRAMMING	TRANSLATE DESIGN SPECS INTO		
	PROGRAM CODE		
40.20			
10.30	© 2002 by Prentice Hall & © 2012 by Yacoub Sabatir		

SESTEMS DEVELOPMENT			
CORE ACTIVITY	DESCRIPTION		
TESTING	UNIT TEST SYSTEMS TEST ACCEPTANCE TEST		
CONVERSION	PLAN CONVERSION PREPARE DOCUMENTATION TRAIN USERS & TECHNICAL STAFF		
PRODUCTION & MAINTENANCE	OPERATE SYSTEM EVALUATE SYSTEM MODIFY SYSTEM		
10.31	© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin		

SYSTEM LIFECYCLE

PROJECT DEFINITION: Is there a problem? Can it be solved with a project?

- SYSTEM STUDY: Analyze problems in existing systems; define objectives evaluate alternatives
- DESIGN: Logical & physical specifications for systems solution
- PROGRAMMING: Develop software code
- INSTALLATION: Construct, test, train, convert to new system
- POSTINSTALLATION/POSTIMPLEMENTATION: Ongoing evaluation, modifications for improvement to meet new requirements

NECESSARY FOR LARGE, COMPLEX SYSTEMS & PROJECTS

*

10.32

ALTERNATIVE SYSTEM-BUILDING APPROACHES

- PROTOTYPING
- APPLICATION SOFTWARE PACKAGES
- END-USER DEVELOPMENT
- OUTSOURCING

10.33

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatir

PROTOTYPING

PROCESS OF BUILDING
EXPERIMENTAL SYSTEM TO
DEMONSTRATE, EVALUATE
APPROACH; USERS REFINE NEEDS

- PROTOTYPE: Preliminary working version of information system for demonstration, evaluation purposes
- ITERATIVE PROCESS

10.34

STEPS IN PROTOTYPING

- 1. IDENTIFY USER'S REQUIREMENTS
- 2. DEVELOP PROTOTYPE
- 3. USE PROTOTYPE
- 4. REVISE & ENHANCE PROTOTYPE

BEST FOR DESIGN OF END-USER INTERFACE: How end-user interacts with system

*

10.35

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatir

APPLICATION SOFTWARE PACKAGES

PREWRITTEN, PRECODED APPLICATION SOFTWARE, COMMERCIALLY AVAILABLE FOR SALE OR LEASE

- GEARED TO COMMON REQUIREMENTS
- CUSTOMIZATION: Modification of software to meet organization's needs, without destroying integrity of package raises development costs
- MUST WEIGH COSTS / BENEFITS
- REQUEST FOR PROPOSAL (RFP): Detailed questions sent to vendors

*

10.36

© 2002 by Proptice Hall & © 2012 by V

STRENGTHS: Improved requirements determination, increased user involvement & satisfaction, reduced application backlog WEAKNESSES: Relatively inefficient, slow transaction processing, may carry high cost, large files can degrade performance, nonprocedural approach may hamper logic & updating requirements * © 2002 by Prentice Hall ** Sabatin**

OUTSOURCING 1/2

CONTRACTING:

- COMPUTER CENTER OPERATIONS
- TELECOMMUNICATIONS NETWORKS
- APPLICATION DEVELOPMENT

TO EXTERNAL VENDORS

>>

10.39

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

OUTSOURCING 2/2

WHEN TO OUTSOURCE:

- If firm won't distinguish itself by developing application
- If predictability of uninterrupted service not important
- If existing system is limited, ineffective, inferior

10.40

OBJECT - ORIENTED SOFTWARE DEVELOPMENT

- De-emphasizes procedures
- Shifts focus from models & data
- To objects, which combine data & procedures
- Objects reusable
- System: classes, objects, relationships
 Reduces development time & cost

10.41

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

RAPID APPLICATION DEVELOPMENT (RAD)

Develop system rapidly:

- Prototyping
- 4th generation tools
- Close teamwork among users & specialists

10.42

Managing Change

- Portfolio Analysis: An analysis of the portfolio of potential applications within a firm to determine the risks and benefits and select among alternatives for information systems
- Scoring Model: A quick method for deciding among alternative systems based on a system of ratings for selected objectives

10.43

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

Scoring Model

Criterion	Weight	Alternative 1	Alternative 2	Alternative 3
User needs met	0.40	2	3	4
Cost of initial purchase	0.20	1	3	4
Financing	0.10	1	3	4
Ease of maintenance	0.10	2	3	4
Chances of success	0.20	3	4	4
Total score		1.9	3.2	4.0

10.44

Cost and Benefit	Analysis	(Figure 11.7)
-------------------------	-----------------	---------------

		1			1	
	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
	1999	2000	2001	2002	2003	2004
Total Cost	1,210,500	491,500	491,500	506,500	491,500	491,500
Total Benefits	595,000	880,000	1,150,000	1,150,000	1,150,000	1,150,000
Net Cashflow	(615,000) (-ve)	388,500	658,500	643,500	658,500	658,500

10.45

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

Cost and Benefit Analysis (Figure 11.7)

 The Payback Method: A measure of the time required to pay back the initial investment of a project/to 'break-even'

Original Investment
Annual net cash inflow = Number of years to pay back = 2.3 years

Accounting Rate of Return on Investment (ROI):
 Calculation of the rate of return from an investment by adjusting cash inflows

 $\frac{\text{(Total Benefits - Total Cost - Depreciation)}}{\text{Useful Life}} = \text{Net Benefit}$

$$ROI = \frac{\text{Net Benefit}}{\text{Total Initial Investment}} = \frac{1,181,500/6}{1,210,500} = 16.27 \%$$

10.46

Cost and Benefit Analysis (Figure 11.7)

 Present Value: The value, in current dollars, of a payment or stream of payments to be received in the future

Payment
$$\times \frac{1 - (1 + \text{interest})^{-n}}{\text{Interest}} = \text{Present Value} = 1,871,771$$

 Cost-Benefit Ratio: A method for calculating the returns from a capital expenditure by dividing total benefits by total costs (1.65)

$$\frac{\text{Total benefits}}{\text{Total costs}} = \text{Cost - benefit ratio} = \frac{\$6,075,000}{3,683,000} = 1.65$$

10.47

© 2002 by Prentice Hall & © 2012 by Yacoub Sabatin

Cost and Benefit Analysis (Figure 11.7)

Profitability Index: Used to compare the profitability of alternative investments

 $\frac{\text{Present value of cash inflows}}{\text{Investment}} = \text{Profitability Index}$

$$\frac{1,871,771}{1,210,500}$$
 = Profitability Index = 1.55

 Internal Rate of Return (IRR): The rate of return or profit that an investment is expected to earn

IRR => Discounte arte that makes cash inflows - initial cost = 0

10.48